Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO.
نویسندگان
چکیده
Five of the genes required for phosphorylative catabolism of glucose in Pseudomonas aeruginosa were ordered on two different chromosomal fragments. Analysis of a previously isolated 6.0-kb EcoRI fragment containing three structural genes showed that the genes were present on a 4.6-kb fragment in the order glucose-binding protein (gltB)-glucokinase (glk)-6-phosphogluconate dehydratase (edd). Two genes, glucose-6-phosphate dehydrogenase (zwf) and 2-keto-3-deoxy-6-phosphogluconate aldolase (eda), shown by transductional analysis to be linked to gltB and edd, were cloned on a separate 11-kb BamHI chromosomal DNA fragment and then subcloned and ordered on a 7-kb fragment. The 6.0-kb EcoRI fragment had been shown to complement a regulatory mutation, hexR, which caused noninducibility of four glucose catabolic enzymes. In this study, hexR was mapped coincident with edd. A second regulatory function, hexC, was cloned within a 0.6-kb fragment contiguous to the edd gene but containing none of the structural genes. The phenotypic effect of the hexC locus, when present on a multicopy plasmid, was elevated expression of glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase activities in the absence of inducer.
منابع مشابه
Cloning and expression of the catA and catBC gene clusters from Pseudomonas aeruginosa PAO.
A 9.9-kilobase (kb) BamHI restriction endonuclease fragment encoding the catA and catBC gene clusters was selected from a gene bank of the Pseudomonas aeruginosa PAO1c chromosome. The catA, catB, and catC genes encode enzymes that catalyze consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catA, catechol-1,2-dioxygenase (EC 1.13.11.1); catB, muconate lactonizing enzym...
متن کاملCloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression.
We report the discovery of the lasR gene, which positively regulates elastase expression in Pseudomonas aeruginosa PAO1. The lasR gene was cloned by its ability to restore a positive elastase phenotype in strain PA103, a strain which possesses the elastase structural gene (lasB) but fails to synthesize the enzyme. Nucleotide sequence analysis revealed an open reading frame of 716 nucleotides en...
متن کاملRole of orFD Pseudomonas aeruginosa H103 Gene in Glucose Uptake
Background:Pseudomonas aeruginosa is a gram negative non facultative bacterium and one of the members of normal flora in different sites of body in healthy humans.this bacterium can resist in fluids and hospital environments for a long time.Pseudomonas aeruginosa has two systems for glucose uptake:a low affinity oxidative pathway and a high affinity phosohorylative pathway.Although the role of ...
متن کاملCharacterization of the mmsAB operon of Pseudomonas aeruginosa PAO encoding methylmalonate-semialdehyde dehydrogenase and 3-hydroxyisobutyrate dehydrogenase.
A 5417-base pair (bp) region of Pseudomonas aeruginosa PAO chromosomal DNA containing the mmsAB operon and an upstream regulatory gene (mmsR) has been cloned and characterized. The operon contains two structural genes involved in valine metabolism: mmsA, which encodes methylmalonate-semialdehyde dehydrogenase; and mmsB, which encodes 3-hydroxyisobutyrate dehydrogenase. mmsA and mmsB share the s...
متن کاملAntibiotic resistance profiles of Pseudomonas aeruginosa isolates containing virulence genes
Background: A most common opportunistic pathogen, Pseudomonas aeruginosa is present in both humans and animals and responsible for various nosocomial infections and healthcare settings related infections. Different virulence genes like; oprL (membrane lipoprotein L) and toxA (exotoxin A i.e. ETA) in P. aeruginosa, assist in its pathogenicity, toxicity and contribute to high antibiotic resistanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 172 11 شماره
صفحات -
تاریخ انتشار 1990